Tetrahedron Letters No. 18, pp 1511 - 1514, 1977. Pergamon Press. Printed in Great Britain.

THE CHEMISTRY OF FULVALENEQUINONE SYSTEM. 111.1 ⁾ SYNTHESIS AND PROPERTIES OF A HEPTATRIAFULVALENE-1,2-QUINONE DERIVATIVE.

Kazuko Takahashi, Kazuyoshi Morita, and Kahei Takase

Department of Chemistry, Faculty of Science, Tohoku University

Sendai 980, Japan

(Received in **Japan** 14 &rob 1977; received in UK for publication 22 Heroh 1977)

The chemistry of non-benzenoid quinones has recently been developed.²⁾ In the field of seven-membered ring systems, diazoketone type quinones³⁾ and very recently p- and o-tropoquinone 4,5) have been synthesized. *However* little is known concerning with other tropoquinonoid compounds, especially tropoquinone methide type compounds. In the course of our studies on the fulvalenequinone systems, we are much interested in a new quinone 2 which is anticipated to have a more strained conformation compared with our previously reported p-isomer $\underline{1}$.¹) We now wish to describe the synthesis and some of the ground state properties of 3,5-dibromo-7,8-diphenylheptatriafulvalene-1,2-quinone 2, as the first example of the o-tropo-

quinone cyclopropenide.

0 0 **8Ph** 3,5-Dibromotropolone was smoothly cyclopropenylated by treatment with an equimolar mixture of 1,2-diphenyl-3-ethoxycyclopropenium ion⁶⁾ and triethylamine in acetonitrile at room temperature for 20 min. to give 3 as reddish violet needles (mp. 152-3°C; 30% yield; m/e(%) 468(4)

M, 440(5)M-CO, 388(8)M-Br, 360(3)M-COBr, 280(97)M-COBr₂, 252(100)M-C₂0₂Br₂). Contrary to stable quinone 1 and its dibromo derivative $4, 7$ compound 3 proved to be rather unstable ; $\frac{3}{2}$ degenerated gradually in solid state upon standing above room temperature, and collapsed completely within 10-60 min. in chloroform, dichloromethane, or acetonitrile solution depending upon the concentration (3 was stable in a dilute solution). In the infra-red spectrum of 3 (ν max (KBr) 1822m, 1620s, 1608s, 1594s, 1578s, 1495m, 1483m, 1410vs, 1376vs, 1295vs, 1172m cm⁻¹) the

1511

C=O and C=C stretching bands appeared at regions similar to those of $\underline{4}$ (ν max (KBr) 1829m, 1625s, 1612s, 1595s, 1585s, 1572s, 1431vs, 1352vs, 1172m cm⁻¹), which is considered to be contributed by dipolar structure $4a$ in the ground state. However in the nmr spectrum of 2 (Table l), the chemical shifts of the phenyl protons ortho to the three-membered ring appeared at relatively higher field than those of the corresponding protons of $\frac{4}{3}$ suggesting that the contribution of the dipolar structure 3a would not be so significant in $\frac{3}{2}$ as in $\frac{4}{2}$ (and $\frac{3}{2}$ would be almost comparable to diphenylcyclopropenone $2^{6)}$) (Table 1). The electronic spectrum of 2 $(\lambda \max (MeCN) 260 \text{ nm} (log \epsilon 4.41), 293(4.33), 335sh(3.86), 365(3.74), 395sh(3.64),$ $502\text{sh}(4.04)$, $532(4.14)$) is shown in Fig. 1, where the longest wavelength absorption maximum is shifted bathochromically by 80 nm with less intensity, compared with that of 4 . The observed absorption maxima for 3 in acetonitrile are in adequate agreement with the calculated transition energies obtained by the appli-

Fig. 1 : Electronic Spectra of the Fulvalenequinones 3 and 4 .

cation of the semiempirical variable bondlength SCF \cdot LCAO- π -MO \cdot CI method⁸⁾ to planar model of 2^9 as listed in Table 2. This fact suggests that 3 would have a nearly coplanar structure whose sterically strained high-energy state is stabilized by strong conjugation effect between the three- and seven-membered rings. The solvent polarity influences to a lesser extent on the shift of the longest wavelength transition of <u>3</u> : 532 nm (in MeCN), 535(in acetone), 540(in CH₂Cl₂), 533(in benzene), 530(in dioxane).

Quinone 2 was not protonated in acetic acid but reversibly protonated in trifluoroacetic acid or in a 1:3 mixture of acetic acid and 70% perchloric acid with formation of the conjugated acid 6 (X=C10₄ : yellow needles ; mp. 162-3[°]C ; λ max $(MeCN-HClO_A)$ 294 nm $(\log \varepsilon 4.63)$, 310(4.60), 442(3.91), 480sh(3.70) ; ν max (KBr) $1620\mathrm{s}$, $1595\mathrm{s}$, $1500\mathrm{m}$, $1412\mathrm{br}$. vs , $1350\mathrm{m}$, $1163\mathrm{s}$, $1090\mathrm{br}$.s cm $^{-1}$). One more protonation of 6 proceeded smoothly in conc. sulfuric acid to give a dication 7^{11}) (λ

max (conc. H_2SO_4) 305 nm (logs 4.56), 424(3.93)). The nmr signals of 6 and 7 are shown in Table 1 together with those of the cations 8 and 9 obtained by the protonation of p-isomer 4 in a similar manner. Although the chemical shifts of phenyl protons of 6 are in nearly the same low field as those of $\underline{8}$, the chemical shifts of the seven-membered ring protons of 6 appear at higher field by 0.52 ppm than that of 8 . This is mainly because the positive charge of the three-membered ring is difficultly distributed into the seven-membered ring in potentially non-planar 6 compared with coplanar 8 . On the other hand, comparing 7 with 9 , the chemical shift differences of their seven-membered ring protons as well as those of their phenyl protons are almost negligible. In this case, it is suggested that neither 1 nor 2 is possible to exist in planar form not only due to the steric crowdness but also due to the electronic repulsion¹²⁾ between the positively charged threeand seven-membered rings.

Acknowledgements. The authors are deeply grateful to Dr. Hiroyuki Yamaguchi and Miss Yuko Shin for the M.O. calculation.

References

- 1) Part II : K. Takahashi and K. Takase, Tetrahedron Lett., 2227 (1972).
- 2) For recent review, see T. A. Turney, "The Chemistry of the Quinonoid Compounds," Ed. by S. Patai, Chapter 16, John Wiley & Sons, London (1974) and more recent literatures.
- 3) W. Ried and R. Conte, Chem. Ber., 105, 799 (1972) ; M. Hoshino and S. Ebine, Bull. Chem. Soc. Japan, <u>43</u>, 1178 (1970) ; T. Nozoe, T. Ikemi, T. Ozeki, Proc. Japan Acad., <u>31</u>, 455 (1955).
- 4) S. Ito, Y. Shoji, H. Takeshita, M. Hirama, and K. Takahashi, Tetrahedron Lett., 1075 (1975) .
- 5) M. Hirama and S. Ito, Tetrahedron Lett., 1071 (1975).
- 6) R. Breslow, T. Either, A. Krebs, R. A. Peterson, and J. Posner, J. Amer. Chem. Soc., $87, 1320 (1965)$.
- 7) K. Takahashi, T. Fujita, and K. Takase, Tetrahedron Lett., 4507 (1971).
- 8) T. Nakajima and S. Katagiri, Mol. Phys., $\overline{1}$, 149 (1963-4) ; H. Yamaguchi, T. Nakajima, and T. L. Kunii, Theor. Chim. Acta, <u>12</u>, 349 (1968).
- 9) The calculated electronic spectral data of heptatriafulvalene-3,4-quinone are reported in ref. 1).
- 10) The SCF orbitals were calculated using an entirely automatic program ; One center repulsion integral : I-A approximation where Ic=11.16 ev, Ac=0.03 ev, 10=17.70 ev, and Ao=2.47 ev. Two-center repulsion integral : Metage-Nishimoto method. Resonance integral : Wolfsberg-Helmholtz's overlap approximation, where eff. nucl. charge Zc=3.25, Zo=4.55, const. Kc-c=0.87 and Kc-o=0.77.
- 11) The quinone $\underline{1}$ also gave the dication in conc. sulfuric acid, see ref. 1).
- 12) In ditropylium dication, the dihedral angle between the two rings has been estimated from M.O. around 70-78" calculation in consideration of spectral data to be : I. S. Akhrem, E. I. Fedin, B. A. Kvasov, and M. E. Vol'pin, Tetrahedron Lett., 5265 (1967) ; H. Volz and M. V. Lecea, Liebigs Ann. Chem., 750, 136 (1971).